19 research outputs found

    Living up to the hype of hyperspectral aquatic remote sensing: science, resources and outlook

    Get PDF
    Intensifying pressure on global aquatic resources and services due to population growth and climate change is inspiring new surveying technologies to provide science-based information in support of management and policy strategies. One area of rapid development is hyperspectral remote sensing: imaging across the full spectrum of visible and infrared light. Hyperspectral imagery contains more environmentally meaningful information than panchromatic or multispectral imagery and is poised to provide new applications relevant to society, including assessments of aquatic biodiversity, habitats, water quality, and natural and anthropogenic hazards. To aid in these advances, we provide resources relevant to hyperspectral remote sensing in terms of providing the latest reviews, databases, and software available for practitioners in the field. We highlight recent advances in sensor design, modes of deployment, and image analysis techniques that are becoming more widely available to environmental researchers and resource managers alike. Systems recently deployed on space- and airborne platforms are presented, as well as future missions and advances in unoccupied aerial systems (UAS) and autonomous in-water survey methods. These systems will greatly enhance the ability to collect interdisciplinary observations on-demand and in previously inaccessible environments. Looking forward, advances in sensor miniaturization are discussed alongside the incorporation of citizen science, moving toward open and FAIR (findable, accessible, interoperable, and reusable) data. Advances in machine learning and cloud computing allow for exploitation of the full electromagnetic spectrum, and better bridging across the larger scientific community that also includes biogeochemical modelers and climate scientists. These advances will place sophisticated remote sensing capabilities into the hands of individual users and provide on-demand imagery tailored to research and management requirements, as well as provide critical input to marine and climate forecasting systems. The next decade of hyperspectral aquatic remote sensing is on the cusp of revolutionizing the way we assess and monitor aquatic environments and detect changes relevant to global communities

    Statistics for the Evaluation and Comparison of Models

    Get PDF
    Copyright 1985 by the American Geophysical Union.Procedures that may be used to evaluate the operational performance of a wide spectrum of geophysical models are introduced. Primarily using a complementary set of difference measures, both model accuracy and precision can be meaningfully estimated, regardless of whether the model predictions are manifesteda s scalars,d irections,o r vectors.I t is additionally suggestedth at the reliability of the accuracy and precision measures can be determined from bootstrap estimates of confidence and significance. Recommendedp roceduresa re illustrated with a comparativee valuation of two models that estimate wind velocity over the South Atlantic Bight

    An Overview of Approaches and Challenges for Retrieving Marine Inherent Optical Properties from Ocean Color Remote Sensing

    Get PDF
    Ocean color measured from satellites provides daily global, synoptic views of spectral water-leaving reflectancesthat can be used to generate estimates of marine inherent optical properties (IOPs). These reflectances, namelythe ratio of spectral upwelled radiances to spectral downwelled irradiances, describe the light exiting a watermass that defines its color. IOPs are the spectral absorption and scattering characteristics of ocean water and itsdissolved and particulate constituents. Because of their dependence on the concentration and composition ofmarine constituents, IOPs can be used to describe the contents of the upper ocean mixed layer. This informationis critical to further our scientific understanding of biogeochemical oceanic processes, such as organic carbonproduction and export, phytoplankton dynamics, and responses to climatic disturbances. Given their im-portance, the international ocean color community has invested significant effort in improving the quality of satellite-derived IOP products, both regionally and globally. Recognizing the current influx of data products intothe community and the need to improve current algorithms in anticipation of new satellite instruments (e.g., theglobal, hyperspectral spectroradiometer of the NASA Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) mis-sion), we present a synopsis of the current state of the art in the retrieval of these core optical properties.Contemporary approaches for obtaining IOPs from satellite ocean color are reviewed and, for clarity, separatedbased their inversion methodology or the type of IOPs sought. Summaries of known uncertainties associated witheach approach are provided, as well as common performance metrics used to evaluate them. We discuss currentknowledge gaps and make recommendations for future investment for upcoming missions whose instrumentcharacteristics diverge sufficiently from heritage and existing sensors to warrant reassessing current approaches

    Satellite sensor requirements for monitoring essential biodiversity variables of coastal ecosystems

    Get PDF
    The biodiversity and high productivity of coastal terrestrial and aquatic habitats are the foundation for important benefits to human societies around the world. These globally distributed habitats need frequent and broad systematic assessments, but field surveys only cover a small fraction of these areas. Satellite-based sensors can repeatedly record the visible and near-infrared reflectance spectra that contain the absorption, scattering, and fluorescence signatures of functional phytoplankton groups, colored dissolved matter, and particulate matter near the surface ocean, and of biologically structured habitats (floating and emergent vegetation, benthic habitats like coral, seagrass, and algae). These measures can be incorporated into Essential Biodiversity Variables (EBVs), including the distribution, abundance, and traits of groups of species populations, and used to evaluate habitat fragmentation. However, current and planned satellites are not designed to observe the EBVs that change rapidly with extreme tides, salinity, temperatures, storms, pollution, or physical habitat destruction over scales relevant to human activity. Making these observations requires a new generation of satellite sensors able to sample with these combined characteristics: (1) spatial resolution on the order of 30 to 100-m pixels or smaller; (2) spectral resolution on the order of 5 nm in the visible and 10 nm in the short-wave infrared spectrum (or at least two or more bands at 1,030, 1,240, 1,630, 2,125, and/or 2,260 nm) for atmospheric correction and aquatic and vegetation assessments; (3) radiometric quality with signal to noise ratios (SNR) above 800 (relative to signal levels typical of the open ocean), 14-bit digitization, absolute radiometric calibration \u3c2%, relative calibration of 0.2%, polarization sensitivity \u3c1%, high radiometric stability and linearity, and operations designed to minimize sunglint; and (4) temporal resolution of hours to days. We refer to these combined specifications as H4 imaging. Enabling H4 imaging is vital for the conservation and management of global biodiversity and ecosystem services, including food provisioning and water security. An agile satellite in a 3-d repeat low-Earth orbit could sample 30-km swath images of several hundred coastal habitats daily. Nine H4 satellites would provide weekly coverage of global coastal zones. Such satellite constellations are now feasible and are used in various applications

    Satellite Sensor Requirements for Monitoring Essential Biodiversity Variables of Coastal Ecosystems

    Get PDF
    The biodiversity and high productivity of coastal terrestrial and aquatic habitats are the foundation for important benefits to human societies around the world. These globally distributed habitats need frequent and broad systematic assessments, but field surveys only cover a small fraction of these areas. Satellite-based sensors can repeatedly record the visible and near-infrared reflectance spectra that contain the absorption, scattering, and fluorescence signatures of functional phytoplankton groups, colored dissolved matter, and particulate matter near the surface ocean, and of biologically structured habitats (floating and emergent vegetation, benthic habitats like coral, seagrass, and algae). These measures can be incorporated into Essential Biodiversity Variables (EBVs), including the distribution, abundance, and traits of groups of species populations, and used to evaluate habitat fragmentation. However, current and planned satellites are not designed to observe the EBVs that change rapidly with extreme tides, salinity, temperatures, storms, pollution, or physical habitat destruction over scales relevant to human activity. Making these observations requires a new generation of satellite sensors able to sample with these combined characteristics: (1) spatial resolution on the order of 30 to 100-m pixels or smaller; (2) spectral resolution on the order of 5 nm in the visible and 10 nm in the short-wave infrared spectrum (or at least two or more bands at 1,030, 1,240, 1,630, 2,125, and/or 2,260 nm) for atmospheric correction and aquatic and vegetation assessments; (3) radiometric quality with signal to noise ratios (SNR) above 800 (relative to signal levels typical of the open ocean), 14-bit digitization, absolute radiometric calibratio

    Satellite sensor requirements for monitoring essential biodiversity variables of coastal ecosystems

    Get PDF
    © The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Ecological Applications 28 (2018): 749-760, doi: 10.1002/eap.1682.The biodiversity and high productivity of coastal terrestrial and aquatic habitats are the foundation for important benefits to human societies around the world. These globally distributed habitats need frequent and broad systematic assessments, but field surveys only cover a small fraction of these areas. Satellite‐based sensors can repeatedly record the visible and near‐infrared reflectance spectra that contain the absorption, scattering, and fluorescence signatures of functional phytoplankton groups, colored dissolved matter, and particulate matter near the surface ocean, and of biologically structured habitats (floating and emergent vegetation, benthic habitats like coral, seagrass, and algae). These measures can be incorporated into Essential Biodiversity Variables (EBVs), including the distribution, abundance, and traits of groups of species populations, and used to evaluate habitat fragmentation. However, current and planned satellites are not designed to observe the EBVs that change rapidly with extreme tides, salinity, temperatures, storms, pollution, or physical habitat destruction over scales relevant to human activity. Making these observations requires a new generation of satellite sensors able to sample with these combined characteristics: (1) spatial resolution on the order of 30 to 100‐m pixels or smaller; (2) spectral resolution on the order of 5 nm in the visible and 10 nm in the short‐wave infrared spectrum (or at least two or more bands at 1,030, 1,240, 1,630, 2,125, and/or 2,260 nm) for atmospheric correction and aquatic and vegetation assessments; (3) radiometric quality with signal to noise ratios (SNR) above 800 (relative to signal levels typical of the open ocean), 14‐bit digitization, absolute radiometric calibration <2%, relative calibration of 0.2%, polarization sensitivity <1%, high radiometric stability and linearity, and operations designed to minimize sunglint; and (4) temporal resolution of hours to days. We refer to these combined specifications as H4 imaging. Enabling H4 imaging is vital for the conservation and management of global biodiversity and ecosystem services, including food provisioning and water security. An agile satellite in a 3‐d repeat low‐Earth orbit could sample 30‐km swath images of several hundred coastal habitats daily. Nine H4 satellites would provide weekly coverage of global coastal zones. Such satellite constellations are now feasible and are used in various applications.National Center for Ecological Analysis and Synthesis (NCEAS); National Aeronautics and Space Administration (NASA) Grant Numbers: NNX16AQ34G, NNX14AR62A; National Ocean Partnership Program; NOAA US Integrated Ocean Observing System/IOOS Program Office; Bureau of Ocean and Energy Management Ecosystem Studies program (BOEM) Grant Number: MC15AC0000

    Effects of turbulent aggregation on clay floc breakup and implications for the oceanic environment.

    No full text
    Understanding how turbulence impacts marine floc formation and breakup is key to predicting particulate carbon transport in the ocean. While floc formation and sinking rate has been studied in the laboratory and in-situ, the breakup response to turbulence has attracted less attention. To address this problem, the breakup response of bentonite clay particles flocculated in salt water was studied experimentally. Flocs were grown in a large aggregation tank under unmixed and mixed aggregation conditions and then subjected to turbulent pipe flow. Particle size was quantified using microscope imaging and in-situ measurements obtained from standard optical oceanographic instruments; a Sequoia Scientific LISST-100X and two WET Labs ac-9 spectrophotometers. The LISST instrument was found to capture the breakup response of flocs to turbulent energy, though the resulting particle size spectra appear to have underestimated the largest floc lengthscales in the flow while overestimating the abundance of primary particles. Floc breakup and the resulting shift towards smaller particles caused an increase in spectral slope of attenuation as measured by the ac-9 instruments. The Kolmogorov lengthscale was not found to have a limiting effect on floc size in these experiments. While the flocs were found to decrease in overall strength over the course of the two-month experimental time period, repeatable breakup responses to turbulence exposure were observed. Hydrodynamic conditions during floc formation were found to have a large influence on floc strength and breakup response. A non-constant strength exponent was observed for flocs formed with more energetic mixing. Increased turbulence from mixing during aggregation was found to increase floc fractal dimension and apparent density, resulting in a shift in the breakup relationships to higher turbulence dissipation rates. The results suggest that marine particle aggregation and vertical carbon transport concepts should include the turbulence energy responsible for aggregate formation and the resulting impact on floc strength, density, and the disruption potential

    Remote Sensing of Coral Reefs: Uncertainty in the Detection of Benthic Cover, Depth, and Water Constituents Imposed by Sensor Noise

    No full text
    Coral reefs are biologically diverse and economically important ecosystems that are on the decline worldwide in response to direct human impacts and climate change. Ocean color remote sensing has proven to be an important tool in coral reef research and monitoring. Remote sensing data quality is driven by factors related to sensor design and environmental variability. This work explored the impact of sensor noise, defined as the signal to noise ratio (SNR), on the detection uncertainty of key coral reef ecological properties (bottom depth, benthic cover, and water quality) in the absence of environmental uncertainties. A radiative transfer model for a shallow reef environment was developed and Monte Carlo methods were employed to identify the range in environmental conditions that are spectrally indistinguishable from true conditions as a function of SNR. The spectrally averaged difference between remotely sensed radiance relative to sensor noise, &epsilon;, was used to quantify uncertainty in bottom depth, the fraction of benthic cover by coral, algae, and uncolonized sand, and the concentration of water constituents defined as chlorophyll, dissolved organic matter, and suspended calcite particles. Parameter uncertainty was found to increase with sensor noise (decreasing SNR) but the impact was non-linear. The rate of change in uncertainty per incremental change in SNR was greatest for SNR &lt; 500 and increasing SNR further to 1000 resulted in only modest improvements. Parameter uncertainty was complicated by the bottom depth and benthic cover. Benthic cover uncertainty increased with bottom depth, but water constituent uncertainty changed inversely with bottom depth. Furthermore, water constituent uncertainty was impacted by the type of constituent material in relation to the type of benthic cover. Uncertainty associated with chlorophyll concentration and dissolved organic matter increased when the benthic cover was coral and/or benthic algae while uncertainty in the concentration of suspended calcite increased when the benthic cover was uncolonized sand. While the definition of an optimal SNR is subject to user needs, we propose that SNR of approximately 500 (relative to 5% Earth surface reflectance and a clear maritime atmosphere) is a reasonable engineering goal for a future satellite sensor to support research and management activities directed at coral reef ecology and, more generally, shallow aquatic ecosystems
    corecore